BRIEF COMMUNICATION A Note on the Parameterization of Purcell’s G 3 E Model for Ordinal and Binary Data

نویسندگان

  • Sarah E. Medland
  • Michael C. Neale
  • Lindon J. Eaves
  • Benjamin M. Neale
  • Dorret Boomsma
  • S. E. Medland
چکیده

Following the publication of Purcell’s approach to the modeling of gene by environment interaction in 2002, the interest in G 9 E modeling in twin and family data increased dramatically. The analytic techniques described by Purcell were designed for use with continuous data. Here we explore the re-parameterization of these models for use with ordinal and binary outcome data. Analysis of binary and ordinal data within the context of a liability threshold model traditionally requires constraining the total variance to unity to ensure identification. Here, we demonstrate an alternative approach for use with ordinal data, in which the values of the first two thresholds are fixed, thus allowing the total variance to change as function of the moderator. We also demonstrate that when using binary data, constraining the total variance to unity for a given value of the moderator is sufficient to ensure identification. Simulation results indicate that analyses of ordinal and binary data can recover both the raw and standardized patterns of results. However, the scale of the results is dependent on the specification of (threshold or variance) constraints rather than the underlying distribution of liability. Example Mx scripts are provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the parameterization of Purcell's G x E model for ordinal and binary data.

Following the publication of Purcell's approach to the modeling of gene by environment interaction in 2002, the interest in G x E modeling in twin and family data increased dramatically. The analytic techniques described by Purcell were designed for use with continuous data. Here we explore the re-parameterization of these models for use with ordinal and binary outcome data. Analysis of binary ...

متن کامل

Signal detection Using Rational Function Curve Fitting

In this manuscript, we proposed a new scheme in communication signal detection which is respect to the curve shape of received signal and based on the extraction of curve fitting (CF) features. This feature extraction technique is proposed for signal data classification in receiver. The proposed scheme is based on curve fitting and approximation of rational fraction coefficients. For each symbo...

متن کامل

به کارگیری مدل‌های رگرسیون لجستیک ترتیبی در مطالعات کیفیت زندگی

 Background & Objectives: Due to the increasing tendency to measure the quality of life in recent years and the extensive quality of life questionnaires, it is important to determine the appropriate method of analyzing data derived from these studies. The aim of the present study was to introduce ordinal logistic regression models as an appropriate method for analyzing the data of quality of li...

متن کامل

Comparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome

Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data.   Methods: This study use...

متن کامل

A note on the first Zagreb index and coindex of graphs

Let $G=(V,E)$, $V={v_1,v_2,ldots,v_n}$, be a simple graph with$n$ vertices, $m$ edges and a sequence of vertex degrees$Delta=d_1ge d_2ge cdots ge d_n=delta$, $d_i=d(v_i)$. Ifvertices $v_i$ and $v_j$ are adjacent in $G$, it is denoted as $isim j$, otherwise, we write $insim j$. The first Zagreb index isvertex-degree-based graph invariant defined as$M_1(G)=sum_{i=1}^nd_i^2$, whereas the first Zag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009